Invited Speakers

NAACL HLT 2016 welcomes this year's invited speakers, who will be giving keynote talks at plenary sessions during the main conference. This year we are delighted to have Regina Barzilay of MIT and Ehud Reiter of Arria NLG.


Ehud Reiter, Arria NLG

9:00am Wednesday, June 15

Evaluating Natural Language Generation Systems

Natural Language Generation (NLG) systems have different characteristics than other NLP systems, which effects how they are evaluated. In particular, it can be difficult to meaningfully evaluate NLG texts by comparing them against gold-standard reference texts, because (A) there are usually many possible texts which are acceptable to users and (B) some NLG systems produce texts which are better (as judged by human users) than human-written corpus texts. Partially because of these reasons, the NLG community places much more emphasis on human-based evaluations than most areas of NLP.

I will discuss the various ways in which NLG systems are evaluated, focusing on human-based evaluations. These typically either measure the success of generated texts at achieving a goal (eg, measuring how many people change their behaviour after reading behaviour-change texts produced by an NLG system); or ask human subjects to rate various aspects of generated texts (such as readability, accuracy, and appropriateness), often on Likert scales. I will use examples from evaluations I have carried out, and highlight some of the lessons I have learnt, including the importance of reporting negative results, the difference between laboratory and real-world evaluations, and the need to look at worse-case as well as average-case performance. I hope my talk will be interesting and relevant to anyone who is interested in the evaluation of NLP systems.

About the speaker:

Ehud Reiter is a Professor of Computing Science at the University of Aberdeen and also Chief Scientist of Arria NLG. He has worked on natural language generation for the past 30 years, on methodology (including evaluation) and resources as well as algorithms, and is one of the most cited authors in NLG. His 2000 book Building Natural Language Generation Systems is widely used as an NLG textbook. Dr Reiter currently spends most of his time trying to commercialise NLG at Arria (one of the largest specialist NLG companies), which grew out of a startup he cofounded in 2009.

Regina Barzilay, MIT

9:15am Monday, June 13

How Can NLP Help Cure Cancer?

Cancer inflicts a heavy toll on our society. One out of seven women will be diagnosed with breast cancer during their lifetime, a fraction of them contributing to about 450,000 deaths annually worldwide. Despite billions of dollars invested in cancer research, our understanding of the disease, treatment, and prevention is still limited.

Majority of cancer research today takes place in biology and medicine. Computer science plays a minor supporting role in this process if at all. In this talk, I hope to convince you that NLP as a field has a chance to play a significant role in this battle. Indeed, free-form text remains the primary means by which physicians record their observations and clinical findings. Unfortunately, this rich source of textual information is severely underutilized by predictive models in oncology. Current models rely primarily only on structured data.

In the first part of my talk, I will describe a number of tasks where NLP-based models can make a difference in clinical practice. For example, these include improving models of disease progression, preventing over-treatment, and narrowing down to the cure. This part of the talk draws on active collaborations with oncologists from Massachusetts General Hospital (MGH).

In the second part of the talk, I will push beyond standard tools, introducing new functionalities and avoiding annotation-hungry training paradigms ill-suited for clinical practice. In particular, I will focus on interpretable neural models that provide rationales underlying their predictions, and semi-supervised methods for information extraction.

About the speaker:

Regina Barzilay is a professor in the Department of Electrical Engineering and Computer Science and a member of the Computer Science and Artificial Intelligence Laboratory at the Massachusetts Institute of Technology. Her research interests are in natural language processing. She is a recipient of various awards including of the NSF Career Award, the MIT Technology Review TR-35 Award, Microsoft Faculty Fellowship and several Best Paper Awards at NAACL and ACL. She received her Ph.D. in Computer Science from Columbia University, and spent a year as a postdoc at Cornell University.