FrameNet for NLP

Getting the **meaningful** roles right Collin F. Baker, ICSI FrameNet Tutorial, NAACL-HLT Denver, 2015

COMPUTER SCIENCE INSTITUTE

Overview

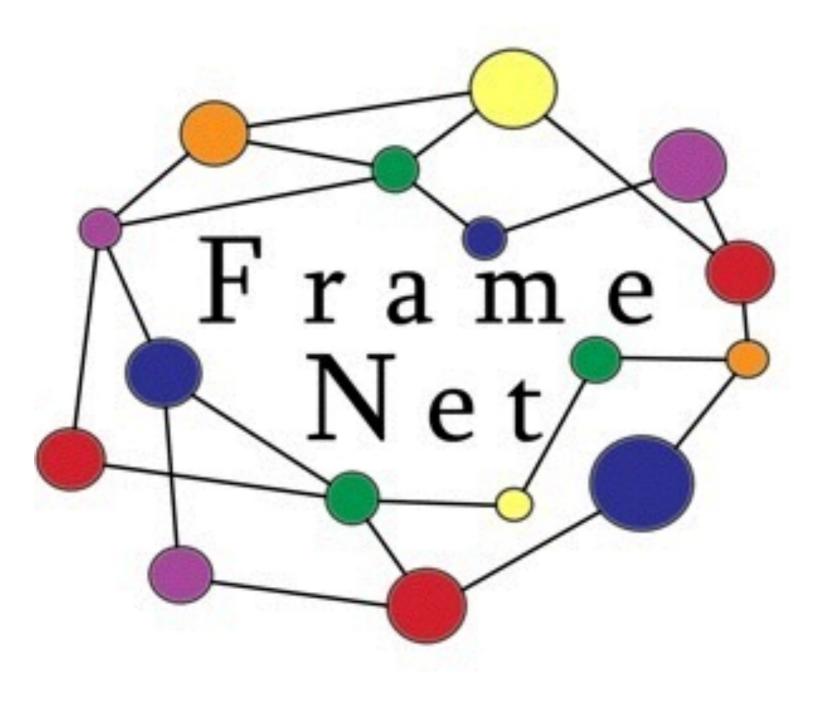
- Frame semantics for NLP
- Comparison with three other Semantic Resources for NLP
 - WordNet : FrameNet
 - PropBank : FrameNet
 - AMR : FrameNet
- Frame Semantics across languages

Frame Semantics

 The central idea of Frame Semantics is that word meanings must be described in relation to semantic frames – schematic representations of the conceptual structures and patterns of beliefs, practices, institutions, images, etc. that provide a foundation for meaningful interaction in a given speech community. (Fillmore *et al.* 2003)

Frame Semantics

- The central idea of Frame Semantics is that word meanings must be described in relation to semantic frames schematic representations of the conceptual structures and patterns of beliefs, practices, institutions, images, etc. that provide a foundation for meaningful interaction in a given speech community. (Fillmore 2003)
- Meanings are relativized to frames. (Fillmore 1977)



Frame Semantics in Practice

https://framenet.icsi.berkeley.edu

• Events

- **Being born**: LUs: *born.v, come into the world.v*
- Giving birth: bear.v, beget.v, birth.n, birth.v, bring forth.v,, carry to term.v, have.v.
- Death: croak.v, death.n, demise.n, die.v, end.n, expire.v, kick the bucket.v . . .

• Events

- **Being born**: LUs: *born.v, come into the world.v*
- Giving birth: bear.v, beget.v, birth.n, birth.v, bring forth.v,, carry to term.v, have.v.
- Death: croak.v, death.n, demise.n, die.v, end.n, expire.v, kick the bucket.v . . .

· Relations

- Being relevant: irrelevant.a, pertinent.a, play (into).v, relevant.a
- Personal Relationship: adultery.n, affair.n, affianced.a, amigo.n, bachelor.n, beau.n

• Events

- **Being born**: LUs: *born.v, come into the world.v*
- Giving birth: bear.v, beget.v, birth.n, birth.v, bring forth.v,, carry to term.v, have.v.
- Death: croak.v, death.n, demise.n, die.v, end.n, expire.v, kick the bucket.v . . .
- · Relations
 - Being relevant: irrelevant.a, pertinent.a, play (into).v, relevant.a
 - Personal Relationship: adultery.n, affair.n, affianced.a, amigo.n, bachelor.n, beau.n
- States
 - Being in operation: off.prep, on.prep, operate.v, operational.a
 - Being located: find.v, lie.v, located.a, sit.v, situated.a, (ten)-twenty.n, whereabouts.n

• Events

- **Being born**: LUs: *born.v, come into the world.v*
- Giving birth: bear.v, beget.v, birth.n, birth.v, bring forth.v,, carry to term.v, have.v.
- Death: croak.v, death.n, demise.n, die.v, end.n, expire.v, kick the bucket.v . . .
- · Relations
 - Being relevant: irrelevant.a, pertinent.a, play (into).v, relevant.a
 - Personal Relationship: adultery.n, affair.n, affianced.a, amigo.n, bachelor.n, beau.n
- States
 - Being in operation: off.prep, on.prep, operate.v, operational.a
 - Being located: find.v, lie.v, located.a, sit.v, situated.a, (ten)-twenty.n, whereabouts.n
- Entities
 - Gizmo: appliance.n, centrifuge.n, contraption.n, device.n, gear.n, machine.n,

FrameNet in two slides (1)

- 1,195 Semantic Frames
- Frame Elements (FEs) (roles) ~12/frame, some ``core'' FEs
- 12,989 Lexical Units (LUs), connections between one lemma+POS and one frame
- 198,932 Manual annotations of corpus examples
- 1,774 Frame-to-frame relations: Inheritance, Using, Perspective on, ...
- (and closely-related FE-to-FE relations)

FrameNet in two slides (2)

- Multiple inheritance, forms a lattice (Valverde-Albacete 2008)
- Constructed bottom-up, quasi-ontology
- Semantic type labels: Animate, Human, Positive_judgement, ...
- Assumes Construction Grammar ("the Constructicon")
- Metaphor and metonymy: sometimes even marked

Is FrameNet an Ontology?

- Not intended as a formal ontology
- Linguistically motivated, bottom up
- We have made non-lexical frames as needed to connect the nodes in certain cases (e.g. Placing, Filling)
- Some non-lexical frames could be eliminated if we had a new frame-frame relation, Entailment.
- Cross-linguistic differences are to be expected: e.g.
 Commercial_transaction vs. Criminal_process

NLP needs frame semantics

- Frames provide generalizations about lexical units at a useful level of abstraction, e.g. **Operate vehicle** covers *drive.v, fly.v, paddle.v, sail.v,* etc. useful for paraphrase
- Roles (Frame Elements) are also more meaningful than traditional semantic role labels, e.g. Driver in Operate vehicle for all the types of vehicle tells us more than just Agent.
- Frames represent conceptual gestalts--more than just the sum of their parts

NLP and FrameNet

- Automatic Semantic Role Labeling (ASRL)-- long history, beginning with Gildea and Jurafsky 2002, through Dipanjan Das et al. 2010 and ff.
- Semantic parsing, joint inference (Das et al. ACL 2013)
- Automatic frame induction (Hermann et al. ACL 2014)
- Controlled crowd-sourcing of annotation (current work with Google, in Nancy Chang *et al.* LAW 2015)

Comparison of Resources

Comparison of NLP Resources

- WordNet : FrameNet
- PropBank : FrameNet
- AMR : FrameNet

WordNet : FrameNet

POS	WordNet	FrameNet	
Noun	146,312	5,177	
Verb	25,047	4,879	
Adj	30,002	2,270	
Adv	5,580	(other) 387	
Total word senses	206,941	12,713	

- Q: Why would you use FrameNet when you have WordNet?
- A: The lexical information each contains is different, and in many ways complementary:
- FN has little to say about common nouns; WN noun hierarchies are usually good
- WN has little syntagmatic information, FN has a lot

WordNet : FrameNet

Structural differences:

- WN: separate hierarchies for N, V, Adj, and Adv., (only)
- Each FN frame can cover words of any POS
- WN: hyper-/hyponymy relations between synsets (i.e. between LUs that are roughly synonymous)
- FN: no **LU** relations *per se*, but several types of **frame** relations
- Content differences:
- FN: annotated examples showing syntax and semantics of each LU.
- FN describes roles (Frame Elements) for each frame
- FN frame hierarchy often provides better generalizations than WN synset hierarchy

PropBank : FrameNet

- Proposition Bank (Palmer *et al.* 2005 *CL*) began with labeling verbs and their arguments (and adjuncts) in WSJ
- Uses Penn POS tags, Penn TreeBank parse structures
- Later added nouns and the roles from associated verbs
- Substantial work on Chinese, Korean, Arabic, Hindi, biomedical domain
- Efficient semantic role labeling systems available
- No equivalent of frames: two levels of role labels:
 - 1. completely general, ARG0-ARG5, ARGM-Time, ARGM-Loc, etc.
 - 2. specific to lexical unit (word sense)

Comparing annotation PB:FN

Text	PB Arg	PB Verb Specific	FN FE name
The internal investigation	Arg0	critic	Communicator
also	ArgM-dis	-	-
CRITICIZED	(Rel)	_	(Target)
MiniScribe's auditors, Coopers & Lybrand,	Arg1	entity being criticized	Evaluee
for allegedly ignoring numerous red flags	Arg2	on what grounds?	Reason

Comparing Role Names PB:FN

Verb	Arg0	Arg1	Arg2
criticize	critic	entity being criticized	on what grounds?
disparage	talker	victim	_
denigrate	speaker	subject	grounds, reason
acclaim	acclaimer	acclaimed	cause, acclaimed for what?
commend	entity giving praise	entity being praised	praised for what?
FN FE Name	Communicator	Evaluee	Reason

Abstract Meaning Representation (Banarescu et al., LAW 2013)

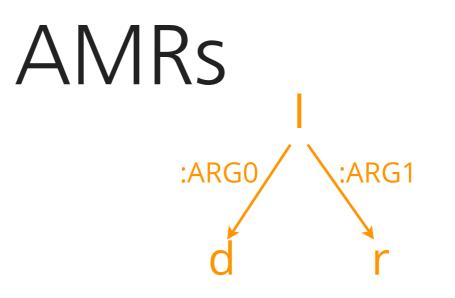
A graph-based representation of lexical concepts and typed relations between those concepts that are denoted by an English sentence.

AMR integrates several aspects of lexical/relational meaning abstracting away from the grammatical details—in a single structure designed to support rapid corpus annotation and data-driven NLP.

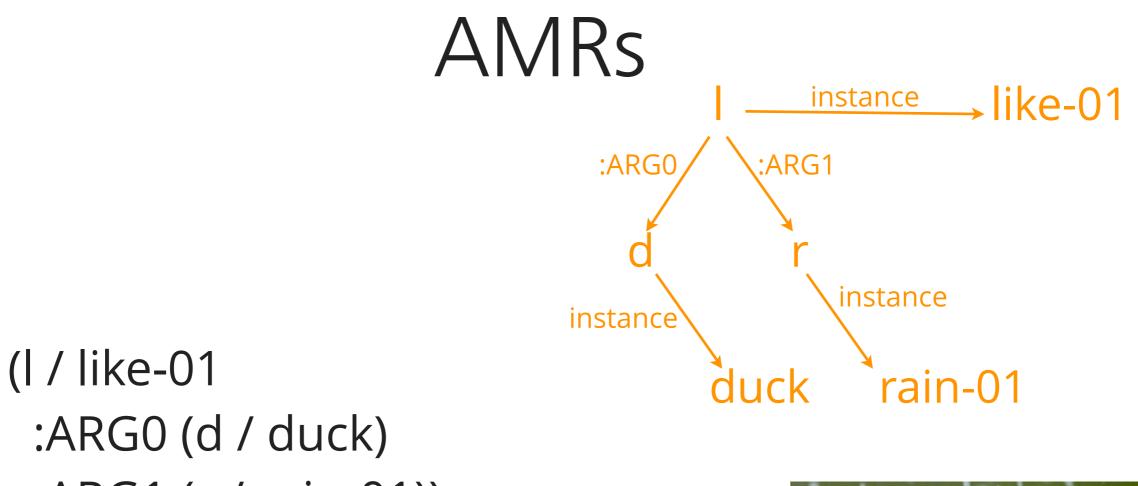
AMRs

(l / like-01 :ARG0 (d / duck) :ARG1 (r / rain-01))

- ducks like rain
- the duck liked that it was raining

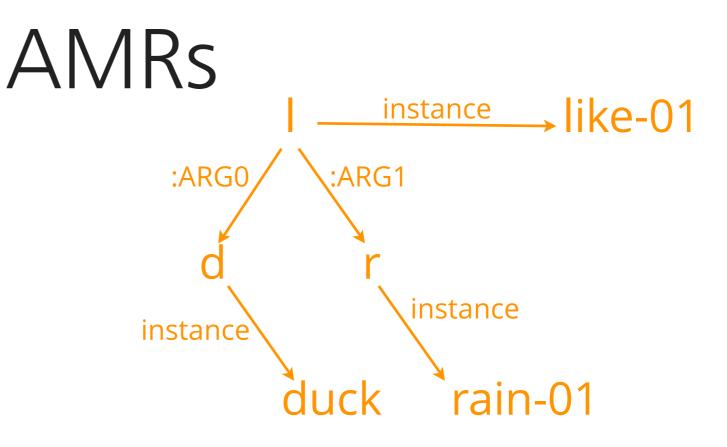


- (l / like-01 :ARG0 (d / duck) :ARG1 (r / rain-01))
- ducks like rain
- the duck liked that it was raining

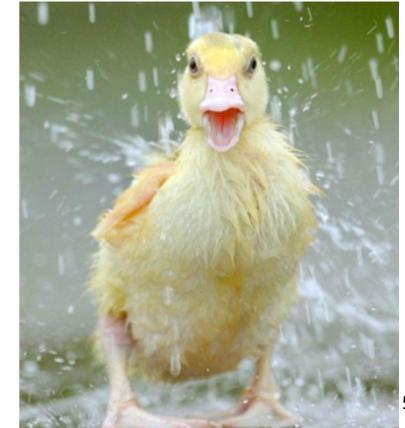


- :ARG1 (r / rain-01))
- ducks like rain
- the duck liked that it was raining





- ducks like rain
- the duck liked that it was raining



AMRs

(s2 / see-01 :ARG0 (i / i) :ARG1 (d / duck :poss (s / she)))

I saw her duck

(s2 / see-01 AMRS :ARG0 (i / i) :ARG1 (d / duck :poss (s / she)))

I saw her duck

(s2 / see-01 :ARG0 (i / i) :ARG1 (d / duck :poss (s / she)))

(s2 / see-01 :ARG0 (i / i) :ARG1 (d / duck-01 :ARG0 (s / she)))

I saw her duck (alternate interpretation)

AMRs



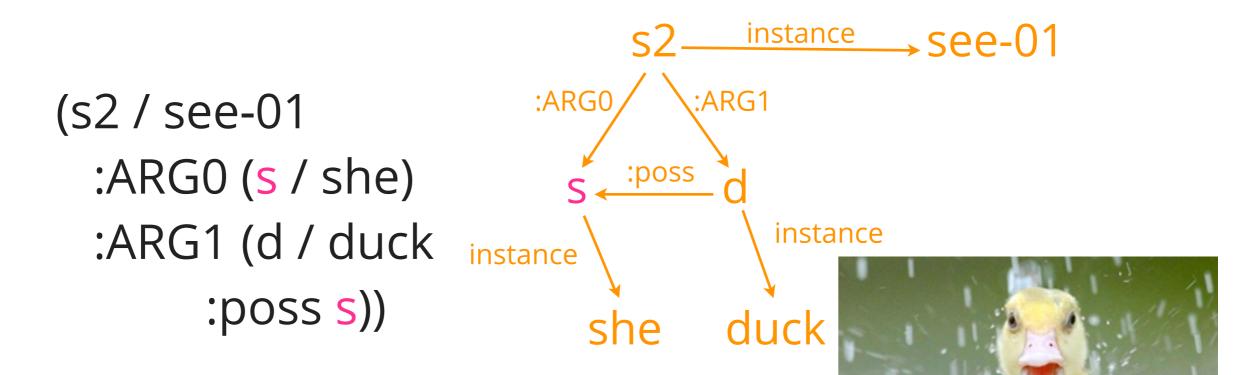
(s2 / see-01 :ARG0 (i / i) :ARG1 (d / duck :poss (s / she)))

AMRs

(s2 / see-01 :ARG0 (s / she) :ARG1 (d / duck :poss s))

She saw her (own) duck

(s2 / see-01 AMRS :ARG0 (i / i) :ARG1 (d / duck :poss (s / she)))



She saw her (own) duck

• PropBank predicate-argument semantics

- PropBank predicate-argument semantics
- name & value entities; entity linking (wikification)

- PropBank predicate-argument semantics
- name & value entities; entity linking (wikification)
- coreference

- PropBank predicate-argument semantics
- name & value entities; entity linking (wikification)
- coreference entities & events

- PropBank predicate-argument semantics
- name & value entities; entity linking (wikification)
- coreference
- modality, negation, questions

- PropBank predicate-argument semantics
- name & value entities; entity linking (wikification)
- coreference
- modality, negation, questions
- relations between nominals

- PropBank predicate-argument semantics
- name & value entities; entity linking (wikification)
- coreference
- modality, negation, questions
- relations between nominals
- canonicalization of content words (remove inflectional morphology, convert adv → adj → noun → verb where possible)

- PropBank predicate-argument semantics
- name & value entities; entity linking (wikification)
- coreference
- modality, negation, questions
- relations between nominals
- canonicalization of content words (remove inflectional morphology, convert adv → adj → noun → verb where possible)

his trial → (t / try-02 :ARG1 (h / he))

- PropBank predicate-argument semantics
- name & value entities; entity linking (wikification)
- coreference
- modality, negation, questions
 history teacher → (p / person
- relations between nominals
 :ARG0-of (t / teach-01)

:ARG1 (h / history)))

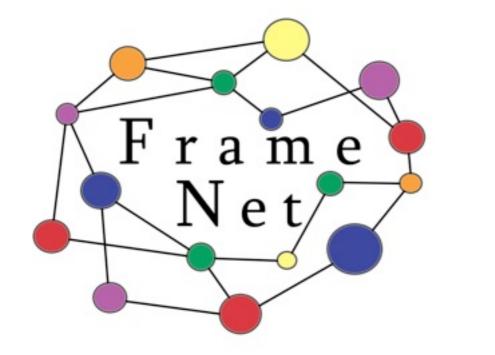
 canonicalization of content words (remove inflectional morphology, convert adv → adj → noun → verb where possible)

his trial → (t / try-02 :ARG1 (h / he))

- PropBank predicate-argument semantics
- name & value entities; entity linking (wikification)
- coreference
- modality, negation, questions
- relations between nominals
- canonicalization of content words (remove inflectional morphology, convert adv → adj → noun → verb where possible)
- ...all in a single graph!

AMR Assets

- Snazzy annotation tool
- Evaluation method (smatch)
- Extensive documentation (guidelines, help pages in tool, heuristics in tool)
- Close coordination with PropBank
- Annotation sites: CU, ISI, SDL, LDC
- Data: 15,000 AMRs (270k words) released, another 5,000 AMRs (150k words) annotated and in the pipeline



A M R

Berkeley FrameNet <u>https://framenet.icsi.berkeley.edu/</u>

http://amr.isi.edu/

VS.

 Scope: AMR also describes coreference, named entities & value expressions, etc.—roughly, accounts for all content words and their relations. But lexical semantics is much shallower than FN.

- Scope: AMR also describes coreference, named entities & value expressions, etc.—roughly, accounts for all content words and their relations. But lexical semantics is much shallower than FN.
- Original goals: Cost-effective annotation + NLP vs. lexicography

- Scope: AMR also describes coreference, named entities & value expressions, etc.—roughly, accounts for all content words and their relations. But lexical semantics is much shallower than FN.
- Original goals: Cost-effective annotation + NLP vs. lexicography
- Event predicates: PropBank rolesets (lexicalized, coarsely disambiguated) vs. FrameNet frames (rich semantic groupings)

- Scope: AMR also describes coreference, named entities & value expressions, etc.—roughly, accounts for all content words and their relations. But lexical semantics is much shallower than FN.
- Original goals: Cost-effective annotation + NLP vs. lexicography
- Event predicates: PropBank rolesets (lexicalized, coarsely disambiguated) vs. FrameNet frames (rich semantic groupings)
- FN: annotations are labeled spans in the sentence;
 AMR: parts of graph not explicitly aligned to the sentence, and not all concepts are words in the sentence

- Scope: AMR also describes coreference, named entities & value expressions, etc.—roughly, accounts for all content words and their relations. But lexical semantics is much shallower than FN.
- Original goals: Cost-effective annotation + NLP vs. lexicography
- Event predicates: PropBank rolesets (lexicalized, coarsely disambiguated) vs. FrameNet frames (rich semantic groupings)
- FN: annotations are labeled spans in the sentence;
 AMR: parts of graph not explicitly aligned to the sentence, and not all concepts are words in the sentence
- FN: for a sentence, no explicit relationship across frame annotations;
 AMR: composition of predicates, shared arguments are explicit

Frame Semantics across languages

Example FrameNets

- Spanish FrameNet <u>http://sfn.uab.es</u> (UA Barcelona, Carlos Subirats)
- Swedish FrameNet <u>http://spraakbanken.gu.se/eng/</u> <u>swefn</u> (U Gothenburg, Lars Borin)
- Japanese FrameNet <u>http://jfn.st.hc.keio.ac.jp</u> (Keio U/U Tokyo, Kyoko Ohara)

Spanish FrameNet

- Created a new balanced corpus, mainly New World Spanish, and used their own POS tagger
- Manual annotation, following Berkeley closely,
- Generally English frames were OK, differences re: verbs of motion (verb-framed vs. satellite framed)

Swedish FrameNet++

Objectives:

- to link a number of existing free lexical resources, both inhouse and external, both modern and historical, into an integrated lexical macro-resource
- to create a full-scale Swedish FrameNet with at least 50,000 lexical units and fully integrated into the macroresource
- to develop methodologies and workflows which make maximal use of LT tools and large text corpora in order to minimize the human effort needed in the work.

Japanese FrameNet

- Annotating texts from "Balanced Corpus of Contemporary Written Japanese" core data
- Created an web-based annotation tool with multilingual support
- Lots of work on the "Constructicon" for Japanese
- Publications on Japanese-English differences

Counts by POS

	Spanish	Swedish	Japanese	English
Nouns	271	28,891	2,043	5,299
Verbs	856	5,398	908	5,141
Adjectives	99	3,293	134	2,347
Adverbs	16	322	89	214
Other	26	124	231	420
Total LUs	1,268	38,028	3,405	13,421
Annotations	11 k	9 k	73 k	200 k

Towards a Multilingual FrameNet

acercarse.v acudir.v adentrarse.v aproximarse.v aproximarse.v arrimarse.v avanzar.v encaminarse.v entrar.v inmigrar.v inmigrar.v irrumpir.v Ilegada.n Ilegar.v peregrinar.v replegarse.v venir.v	ankomma ankomst anlända anlöpa båtankomst bussankomst dyka_upp ensamkomma färjeankomst flygankomst fram framkomst framme hamna hemkommen hemkomst infinna_sig inlöpa inresa inställa_sig	たくつなはいせ届帰到到もや入入着達迫近至来どるくるいたまくる着来どつる港くすりづるるり、、、るいであるり、、、ののではいかい。、のでは、、、、、のでは、、、、、、、、、、、、、、、、、、、、、、、、	appear.v approach.n approach.v arrival.n arrive.v come.v crest.v descend_(on).v enter.v entrance.n entry.n find.v get.v hit.v influx.n make it.v make.v reach.v return.n return.n visit.v
--	---	---	---