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FrameNet + NLP = <3

• We want to develop systems that 
understand text 

• Frame semantics and FrameNet offer a 
linguistically & computationally satisfying 
theory/representation for semantic relations
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Frame-semantic Parsing

• Given a text sentence, analyze its frame 
semantics. Mark: 

‣ words/phrases that are lexical units 

‣ frame evoked by each LU 

‣ frame elements (role–argument pairings) 

• Analysis is in terms of groups of tokens.  
No assumption that we know the syntax.
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SemEval Task 19 [Baker, Ellsworth, & Erk 2007]



FrameNet SRL, Parsing:  
Early Work

• The original SRL paper actually used FrameNet 
(Gildea & Jurafsky 2002).  
Also Thompson et al. 2003 (w/ frame ID), 
Fleischman et al. 2003, Padó & Lapata 2005,  
Erk & Padó 2006, Matsubayashi et al. 2009, 
Fürstenau & Lapata 2009. 

• SemEval 2007 shared task (Baker et al. 2007): full-
text annotations.  
Best system by Johansson & Nugues.
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SEMAFOR
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[Das, Schneider, Chen, & Smith 2010]



SEMAFOR
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✓

[Das, Schneider, Chen, & Smith 2010]



The SEMAFOR Pipeline
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Target 
Detection

Frame 
Disambiguation

Argument 
Detection + 

Labeling

[Das, Schneider, Chen, & Smith 2010]

statistical 
(supervised, feature-based) 

trained on full-text annotations

heuristic  
(whitelist)

Preprocessing: syntactic dependency parser



Full-text Annotations
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https://framenet.icsi.berkeley.edu/fndrupal/index.php?q=fulltextIndex

https://framenet.icsi.berkeley.edu/fndrupal/index.php?q=fulltextIndex


Full-text Annotations

9



SEMAFOR

• SEMAFOR’s models consist of features over 
observable parts of the sentence (words, 
lemmas, POS tags, dependency edges & paths) 
that may be predictive of frame/role labels 

• Full-text annotations as training data for 
(semi)supervised learning 

• Extensive body of work on semantic role 
labeling [starting with Gildea & Jurafsky 2002 for 
FrameNet; also much work for PropBank]
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[Das, Schneider, Chen, & Smith 2010]



SEMAFOR

• State-of-the-art performance on SemEval’07 
evaluation (outperforms the best system 
from the task, Johansson & Nugues 2007) 

• On SE07:   [F] 74% [A] 68% [F→A] 46%  
On FN1.5: [F] 91% [A] 80% [F→A] 69% 

• BUT: This task is really hard. Room for 
improvement at all stages.
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[Das, Schneider, Chen, & Smith 2010]

[Das et al. 2014]



SEMAFOR Demo

12

http://demo.ark.cs.cmu.edu/parse

http://demo.ark.cs.cmu.edu/parse
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How to improve?

• Better modeling with current resources 

• Ways to use non-FrameNet resources 

• Create new resources?
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Advances in Modeling
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Advances in Modeling
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Unknown Predicates

• Problem: Many frame-evoking predicates 
are seen neither in lexicon nor training data. 
How, then, to assign the correct frame? 

• Solution: Propagate frame labels from 
known predicates to unknown predicates in 
a similarity graph. [Das & Smith 2011, 2012 / 2014]
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Unknown Predicates
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Computational Linguistics Volume 40, Number 1

predicates) from seed data, resulting in large but noisy lexicons, which are used to
constrain structured prediction models. Applications have ranged from domain adap-
tation of sequence models (Subramanya, Petrov, and Pereira 2010) to unsupervised
learning of POS taggers by using bilingual graph-based projections (Das and Petrov
2011).

We describe our approach to graph construction, propagation for lexicon expansion,
and the use of the result to impose constraints on frame identification.

5.5.1 Graph Construction. We construct a graph with lexical units as vertices. Thus, each
vertex corresponds to a lemmatized word or phrase appended with a coarse POS tag.
We use two resources for graph construction. First, we take all the words and phrases
present in a dependency-based thesaurus constructed using syntactic cooccurrence
statistics (Lin 1998), and aggregate words and phrases that share the same lemma and
coarse POS tag. To construct this resource, Lin used a corpus containing 64 million
words that was parsed with a fast dependency parser (Lin 1993, 1994), and syntactic
contexts were used to find similar lexical items for a given word or phrase. Lin sepa-
rately treated nouns, verbs, and adjectives/adverbs, so these form the three parts of the
thesaurus. This resource gave us a list of possible LUs, much larger in size than the LUs
present in FrameNet data.

The second component of graph construction comes from FrameNet itself. We
scanned the exemplar sentences in FrameNet 1.5 and the training section of the full
text annotations and gathered a distribution over frames for each LU appearing in
FrameNet data. For a pair of LUs, we measured the Euclidean distance between their
frame distributions. This distance was next converted to a similarity score and inter-
polated with the similarity score from Lin’s dependency thesaurus. We omit further
details about the interpolation and refer the reader to full details given in Das and Smith
(2011).

For each LU, we create a vertex and link it to the K nearest neighbor LUs under the
interpolated similarity metric. The resulting graph has 64,480 vertices, 9,263 of which
are labeled seeds from FrameNet 1.5 and 55,217 of which are unlabeled. Each vertex has
a possible set of labels corresponding to the 877 frames defined in the lexicon. Figure 4
shows an excerpt from the constructed graph.

Figure 4
Excerpt from our constructed graph over LUs. Green LUs are observed in the FrameNet 1.5 data.
Above/below them are shown the most frequently observed frame that these LUs associate
with. The black LUs are unobserved and graph propagation produces a distribution over most
likely frames that they could evoke as target instances.
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Word Representations

• Problem: With little training data, many 
features are too infrequent to be useful—
particularly for rare/unseen words. 

• Solution: Learn word embeddings that are 
predictive of frame labels (neural network). 
[Hermann et al. 2014]
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Constraints on Argument 
Combinations

• Problem: A frame’s arguments should not overlap, but 
this means classification decisions are not independent. 

• Also, some frames define hard Requires/Excludes 
constraints over role pairs. 

• Solution 1: Beam search (approximate).  
[Das et al. 2010 / 2014] 

• Solution 2: Dual decomposition (exact).  
[Das et al. 2012 / 2014] 

• Solution 3 (Google’s variant of SEMAFOR): Label arguments 
with dynamic programming. [Täckström et al. 2015]
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Constraints on Argument 
Combinations
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Figure 1: An example sentence from the annotations released as part of FrameNet 1.5 with three predicates marked in
bold. Each predicate has its evoked semantic frame marked above it, in a distinct color. For each frame, its semantic
roles are shown in the same color, and the spans fulfilling the roles are underlined. For example, manner evokes the
CONDUCT frame, and has the Agent and Manner roles fulfilled by Austria and most un-Viennese respectively.

2 Collective Argument Identification

Here, we take a declarative approach to modeling
argument identification using an ILP and relate our
formulation to prior work in shallow semantic pars-
ing. We show how knowledge specified in a lin-
guistic resource can be used to derive the constraints
used in our ILP. Finally, we draw connections of our
specification to graphical models, a popular formal-
ism in AI, and describe how the constraints can be
treated as factors in a factor graph.

2.1 Declarative Specification
Let us denote a predicate by t and the semantic
frame it evokes within a sentence x by f . In this
work, we assume that the semantic frame f is given,
which is traditionally the case in controlled exper-
iments used to evaluate SRL systems (Màrquez et
al., 2008). Given the semantic frame of a predicate,
the semantic roles that might be filled are assumed
to be given by the lexicon (as in PropBank and
FrameNet). Let the set of roles associated with the
frame f be Rf . In sentence x, the set of candidate
spans of words that might fill each role is enumer-
ated, usually following an overgenerating heuristic;2

let this set of spans be St. We include the null span �
in St; connecting it to a role r � Rf denotes that the
role is not overt. Our approach assumes a scoring
function that gives a strength of association between
roles and candidate spans. For each role r � Rf and
span s � St, this score is parameterized as:

c(r, s) = � · h(t, f,x, r, s), (1)

where � are model weights and h is a feature func-
tion that looks at the predicate t, the evoked frame
f , sentence x, and its syntactic analysis, along with
2Here, as in most SRL literature, role fillers are assumed to be
expressed as contiguous spans, though such an assumption is
easy to relax in our framework.

r and s. The SRL literature provides many feature
functions of this form and many ways to use ma-
chine learning to acquire �. Our presented method
does not make any assumptions about the score ex-
cept that it has the form in Eq. 1.

We define a vector z of binary variables zr,s �
{0, 1} for every role and span pair. We have that:
z � {0, 1}d, where d = |Rf |� |St|. zr,s = 1 means
that role r is filled by span s. Given the binary z vec-
tor, it is straightforward to recover the collection of
arguments by checking which components zr,s have
an assignment of 1; we use this strategy to find argu-
ments, as described in §4.2 (strategies 4 and 6). The
joint argument identification task can be represented
as a constrained optimization problem:

maximize
�

r�Rf

�
s�St

c(r, s)� zr,s

with respect to z � {0, 1}d

such that Az � b. (2)

The last line imposes constraints on the mapping be-
tween roles and spans; these are motivated on lin-
guistic grounds and are described next.3

Uniqueness: Each role r is filled by at most one
span in St. This constraint can be expressed by:

�r � Rf ,
�

s�St
zr,s = 1. (3)

There are O(|Rf |) such constraints. Note that since
St contains the null span �, non-overt roles are also
captured using the above constraints. Such a con-
straint is used extensively in prior literature (Pun-
yakanok et al., 2008, §3.4.1).
Overlap: SRL systems commonly constrain roles
to be filled by non-overlapping spans. For example,
Toutanova et al. (2005) used dynamic programming
over a phrase structure tree to prevent overlaps be-
tween arguments, and Punyakanok et al. (2008) used
3Note that equality constraints a ·z = b can be transformed into
double-side inequalities a · z � b and �a · z � �b.

210



Conclusion

23

• SEMAFOR system from CMU has been applied to 
tasks as diverse as stock prediction and spoken 
dialogue segmentation 
 

• Ongoing research at CMU, Google, & elsewhere!

http://demo.ark.cs.cmu.edu/parse

http://www.ark.cs.cmu.edu/SEMAFOR/

http://demo.ark.cs.cmu.edu/parse
http://www.ark.cs.cmu.edu/SEMAFOR/
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